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The zeroth order excitonic wave-function built previously is considered as a zeroth order wave-
function for the excited state. The interaction with other singly, doubly and triply excited determinants
is taken into account through a 2" order perturbation process. A proper definition of the unperturbed
Hamiltonian allows cancellation between the ground state and excited state series, and thus the direct
calculation of transition energies. The complete localization of MO’s in the CNDO approximation
makes the calculation very rapid. The method is applied to the series of linear polyenes
H—(CH=CH)y—HQ2 =N <7) with the CNDO/2 parametrization. The evolution of the excitonic
wave-function is analyzed.

Die zuvor konstruierte excitonische Wellenfunktion nullter Ordnung wird als Wellenfunktion
nullter Ordnung fiir den angeregten Zustand verwendet. Die Wechselwirkung mit anderen einfach,
doppelt und dreifach angeregten Determinanten wird mittels Storungsrechnung 2. Ordnung be-
riicksichtigt. Bei geeigneter Wahl des ungestdrten Hamiltonoperators hebt sich der Grundzustand
bei Berechnung der Ubergangsenergien heraus, was auf ihre direkte Bestimmung hinausliuft. Die
vollstindige Lokalisierung der MO’s hat zur Folge, daB} bei Anwendung des CNDO-Verfahrens die
Berechnung sehr schnell vonstatten geht. Die Methode wird auf die Reihe linearer Polyene des Typs
H—(CH=CH)y—H((2 =N =£7) angewendet (CNDO/2-Parametrisierung). Die excitonische Wellen-
funktion wird beziiglich der Zellenpopulation und deren Schwankungen untersucht.

On prend la fonction d’onde excitonique déja construite comme fonction d’onde d’ordre zéro
pour Tétat excité. L'interaction avec les autres déterminants monoexciiés, les déterminants di- et
tri-excités est prise en considération par une perturbation au 2¢ ordre. Un choix judicieux de I'Ha-
miltonien non perturbé met en évidence d’importantes suppressions entre les séries de I'état excité
et de 'état fondamental, et par conséquent le calcul direct des énergies de transition. Malgré le caractére
multiconfigurationel de ¥y, la localization complete des OM rend le calcul extrémement rapide dans
les hypothéses CNDO. La méthode est appliquée a la série des polyénes linéaires H—(CH=CH)y—H
(N=242a 7). Analyse de la fonction d’onde excitonique en terme de populations de loge et de leur
fluctuations.

The use of fully localized Molecular Orbitals (MO’s) for the ground state
energy calculation appeared to be very interesting from both computational
and interpretative points of view [1]. The PCILO (Perturbative Configuration
Interaction from Localized Orbitals) method [2] built along this scheme has
been widely used for conformational studies. This method, at least with the
CNDO [3] approximations on the atomic integrals, is much more rapid than the
usual variational methods. The use of localized MO’s for the excited states repre-
sentations generally requires multiconfigurational wave functions. The well-
known excitonic methods [4] use fully localized MO’s and represent the excited
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state as a linear combination of local single excitations. The linear combination
results from the solution of the Configuration Interaction (CI) problem between
the singly excited determinants. In the preceeding paper of this series [5], the
construction of such wave-functions have been analyzed for conjugated systems,
and it has been proved that the nxn* transitions might,be treated as linear combi-
nations of nx* local single excitations, the (o — x) coupling which mixes the n=*
and oo* excitations being treated by perturbational methods with a sufficient
accuracy.

But such excitonic wave functions may only be considered as zeroth-order
wave-functions. When one treats the ground state problem one takes into account
all the singly and doubly excited determinants which interact with the zeroth-
order ground state determinant, and which introduce respectively delocalization
and correlation effects [2]. The linear combination of singly excited determinants
will interact with the ground state determinant, and with numerous doubly and
triply excited determinants. In order to calculate a reasonable transition energy,
one must take into account in a coherent way both the interactions with the ground
state determinant and with the excited state zeroth order wave-function. The
present paper proposes a method which calculates second order corrected
transition energies; the second order energy corrections are calculated from both
the fully localized single determinant for the ground state and the excitonic
multiconfigurational wave-function for the excited state. A convenient definition
of the unperturbed Hamiltonian H° allows important cancellations between
the two series. Due to these cancellations, the computational time of the transition
energy is analogous to that of the ground state energy calculations, despite the
multiconfigurational character of the excited state and the very great number of
doubly and triply excited configurations included in the process.

1. Method

The zeroth order wave-function W2 is a linear combination of certain number
of determinants, defining a subspace S
V=2 CmPr, (1

1eS

For the nn* transitions, the states @, will be the singly excited nn* determinants
P (]*) - a;; a;P, j
i PO = Z Z Cmif“¢<i ) (2)
" etm
The coefficients ¢,,;;» are obtained from the diagonalization of the CI matrix
restricted to the S subspace, i.e. the 7 excitonic matrix. Therefore the interaction

matrix elements between the zeroth wave functions of two nzn* excited states
0 (]
Yo and ¥, are zero. (PO H| P> = 0.

The CI matrix restricted to subspace S is diagonal in the basis of the function o
Now one performs a change of the basis set of the CI in the subspace S; the
determinants outside of § are kept unchanged. Therefore the new basis is now
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Fig. 1. Structure of the interactions between the excitonic wave-functions ¥2 with the various functions
of the new basis set of the CI matrix. @, is the ground state single determinant

i) the multiconfigurational wave functions Y9 in the subspace S,
ii) the single determinants @; outside of §,.

F
Since the singly excited determinants @ (} ) belonging to S interact with other
1

singly excited determinants outside of S and some doubly and triply excited
determinants, the states P2 also interact with these determinants, as illustrated
i Fig. 1.

We shall take into account through a second order perturbation process the
interactions of the excitonic wave-function ¥, for the state m with the ground
state determinant on one hand and with the various excited determinants outside
of S on the other hand.

In the second order energy, the summation is restricted to the determinants
outside of S: (PO H | @,>?

En= 3

0 0
I¢8 Em_EI

3)

where E2 and E? are the zeroth order energies associated with the state m and the
determinant @; HO WO = EO @O (4)

H°®,=FE%,; for I1¢S. (5)

H® will be defined by these relations, and by a proper choice of Ej, and EY.
E will be taken as the mean value of the exact Hamiltonian for the state @,,
according the Epstein-Nesbet partition of the total Hamiltonian [6].

Ej ={&/|H|®p . (6)

E2 will not be taken according to the same definition which would lead to absurd
dependencies of the transitions energies to the number of particles [7]. We use
a “barycentric” definition of H® for the state m
En= ) cu{®/|H|®p) (7
IeS
E? differs from the eigenvalue E,, of the excitonic matrix. If P, is the projector on

the subspace S,
PHP¥)=E, ¥ ®)

E$n=<Y’m|Hl‘I’m>=\IZZCMCW@I\HWD- ©)

es
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As will be shown further on, this definition of EJ will lead to important cancel-
lations in the calculation of the transition energy.
The second order energy may be developed.

2
2=y T, DHIO
IéS Je§ m I (10)
(D, [H| D) {P/|H|Px)

+ Cpy€
By &3 Ok E,—Ej
eS

In this expression, the first terms will be called diagonal terms, and the second
ones will be called cross-terms. Since one is supposed to work on a given excited
state, the subscript m will be omitted here after.

Among the configurations I outside of S, oné finds first the ground state
configuration, which leads to the correction

I*F %
a= Z Z Z Z 2610 Cur 7 go (11)
;__,___/

ER

where in F, = {i| F |j*>, F is the Fock operator. This Fock operator reduces to
its monoelectrlc part if i and j are different when the MO’s are fully localized in
the CNDO hypotheses.

The subspace outside of S also includes singly excited configurations.

L
If S is built of singly excited (Z ) configurations, the singly excited con-
figurations outside of S belong to two groups;

*
— the (;) singly excited configurations, which reduce to the “polarization”
£
(Z ) configurations in the PCILO-CNDO hypotheses.

* %
— the (Z ) and (Z ) configurations, which only play a role in non-planar

systems. The second order effect of the singly-excited configurations is given in
Appendix.

ik
According to the Slater’s rules, a singly excited configuration @(1 ) only
interacts with the doubly excited determinants which involve either i or j* in
l-* £ 3% * .
their excitation process, i.e. @ (i Z ) or <£ Z ) But in the CNDO hypothescs,

the full localization implies

*
t* = j* togetanonzero< ()

*
t=1i togetanonzero< ()

or

t* *
( >> matrix element,
i

£
>> matrix element.
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The doubly excited determinants which belong to the summation over I in Eq. (3),
] %
actually involve one (n ) excitation and one (z ) excitation, where p and g may
i

be ¢ or # MO’s. If n, is the number of = bonds, and n the total number of bonds,
the number of doubly excited determinants involved in the 2nd order correction
of the excited state is proportional to n? x n®,

53
The triply excited determinants which interact with a given 45(1 ) singly
i* % ok
excited determinant may be written as ¢ (‘i o ) according to the Slater’s rules.

But the CNDO hypotheses and the full localization of the MO’s implie
p=q and r=s (orp=sandr=gq)

£ * ok
el %)
i pr

Once more the number of triply excited determinants interacting with the zeroth
order description of the excited state is proportional to n2 x n’.

One may already notice at this stage the benefit of the localized model;
in a delocalized framework, there would be n* triply excited configurations

since
3
]

Hlo([']) = Grigts® = prista®y.

Ed L P

¢ (z ;1) ) interacting with a given singly excited determinant @ (i ), even in
¥

the CNDO hypotheses. This feature already balance the disadvantage of having

a multiconfigurational zeroth order wave-function for the excited state.

2. Cancellations between the Ground State
and Excited States 2°* Order Corrections

One knows that if one uses the same set of MO’s for the ground state the
excited state, and if the excited state zeroth order wave-function is a single con-
figuration, important cancellations occur between the perturbation series of the
ground state and of the excited state [8]; for instance in the second order energies,
the effect of most of the triply excited determinants upon the excited configuration
are equal to the effect of most of the doubly excited determinants upon the ground
state determinant.

We shall demonstrate that this phenomenon, which may be called “cancel-
lation of common diagrams in transition energies”, also occurs in the excitonic
treatment as long as a correct definition of H® has been chosen.

Let us consider for instance the effect of the delocalization single excitations
p—q*(p#gq) on the ground and excited states. On the ground state these ex-
citations lead to the so called delocalization 2 order energy [2]

s2del=Y ¥ 2F2, / (Eg ~E° (Z*)) .

r¥q
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On the excited state, such excitations are also possible. They will lead to some
cross terms which will be analyzed in the Appendix and diagonal terms

i L e

p#q
where R is a remainder triple summations where p or ¢ =i or j; this term occurs
because when p or g is equal to i or j, there is only one excitation instead of two.

ORI
edel+R=Y Y4 ¥ 32 pq*/(E/—EO(‘g I‘ﬂ))
i

p#q

Let us assume
* q* q* 0
E°}’ » —E§= EO —E+E » —Ej. (13)

[}

PO s "
E'_EO(-’, 1 ):E'-EO(f ) —E°<q ) +E9
i p i p

Ry )

el
P

. A . . j*
Since E’ is the barycenter of the (n ) single excitations, the quantity E'— E° (1 )

Then

(14)

%
is small with respect to the denominator EJ — E° (z ) which represents a single

excitation energy. Therefore, a limited development gives

e e E~E°(]*)
el I Sl e |
I EE e

Thus

p¥*q EO

gfdel+ R = ZZCU*ZZ————(—— 1—

2l vy,
J

P#4 Eg_Eo(q ) i
4

pP#q

+y Zﬁ%;;%‘ [Ef_Eo (i*)} (17)
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Fig. 2. Evolution of the experimental and calculated transition energies S, —S; towards the first
singlet excited state (2a), S, — S, towards the second singlet excited state (2b), S, — T; towards the first
triplet excited state (2¢). + --- + experimental values in vapor state, -
solution, x ——x E? zeroth order transition energies, O——O EZ™ zeroth order transition energies

O'*
corrected by the ( ) singly excited determinants, A——A E? calculated transition energies after
7 the full second order correction

The normalization condition and the definition of E' [Eq. (8)] imply Z Z ciu=1

and E' = Z Z ¢ E° ( ) Therefore &f del + R = & del.

This demonstratlon requires Eq. (13) to be valid. This is verified if H® for the
ground state is the sum of monoelectronic hamiltonians, for instance in the
Moller-Plesset definition of H® [9]; with such a definition the transition energies
are simply differences between monoelectronic energies, and are therefore ad-
ditive. With the Epstein-Nesbet definition of H® [6], Eq. (13) is only approximate.
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The practical consequence of this cancellation is that if &3 del has been already
calculated for the second order ground state energy, through an n? summation,
the calculation of the delocalization effects on the transition energy only requires
the calculation of R, through a n2 xn summation and of the cross terms. The
number of cross terms contributions is demonstrated in the Appendix to increase
like n3 x n at most. The cancellation of common diagrams reduces the computa-
tion time from nZn? to n3n. The same considerations might be developped for
the 2™ order correlation effects on ground state, resulting from the interaction
with the doubly excited determinants, and on the excited state, resulting from its
interaction with the triply excited determinants.

3. Calculated Transition Energies

We have studied the all-trans linear polyenes C,yH,y1, from N=2to N =7.
Most of experimental spectra have been obtained in liquid phase in solvants
such as hexane or isooctane [ 10]. But for butadiene, hexatriene and octatetraene,
spectra in gaseous phase have been given [11] showing a bathochromic solvant
effect of 0.2-0.3 eV.

In our calculations, all bond angles are taken equal to 120° and the bond
lengths are those calculated by Julg [12].

a) So— 8, Transitions Energies

Table 1 gives the zeroth order transition energies E?, i.e. the transition energies
calculated after the diagonalization of the () excitonic matrix, EZ™ the transition
energies including the second order correction of the ¢ monoexcited configurations

a* . .- . .
<I>(G ) on the excited state, E? the transition energies obtained after the full

second order correction on both states, and E, the experimental transition energies
(E, ,E, ; are obtained respectively in vapor phase and in solution).

Figure 2a shows the evolutions of E2, E>™, E? and the experimental (E, , and
E, ¢ transition energies with N, the number of double bonds.

The curve E? parallels the experimental one, but lies several electronvolts
too high.

The curve E*™ runs also quite parallel to the experimental curves, the calcu-
lated transition energies are always lower than the calculated (m) excitonic transi-
tion energies E?, due to the negative effect of the (¢) singly excited configurations.

. . . . o¥\ . . .
The effect of the singly excited configurations ( ) is rather important in
o

small polyenes as noticed by Herzenberg et al. [12], Dunning and Mc Koy [14]
and Giessner and Pullman [15]. Denis and Malrieu [16] had demonstrated that
this effect decreases as N~! when using the usual delocalized description. In our
model, one notices only a small decrease of this correction (1.05-0.95) when N
varies from 2-7 (Table 1). The value of this correction tends towards a non-zero
constant. This difference between the delocalized and excitonic models is due to
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Table 1. Experimental and calculated transition energies for H—(CH=CH),—H polyenes from N =2 to

N=7
N State Experimental FE? Exm  E2 s1 s2 d1 d2 cs cd
values

2 St 59 (5.7) 9.69 865 1009 +039 —138 +040 +057 +123 +0.23
S2 13.69 1234 :
T1 3.20 5.99 599 698 +066 —0.65 +096 +048 —047 0

3 S1 5 (475 7.94 6.96 795 4075 —1.76 +049 +0.60 +0.64 +0.27
S2 10.99 9.99
T1 2.60 4381 4.81 565 +1.12 —-097 +105 +0.52 -097 0

4 S1 4.45 (4.20) 7.15 6.18 659 +092 —-205 4054 +062 +0.12 +40.29
S2 (5.84) 9.38 8.36 986 +0.70 —207 +055 +0.62 +148 +0.10
T1 2.20 430 4.30 484 +127 -120 4109 +053 -1.16 0

5 St (3.75) 6.75 5.80 5.83 +099 —222 +0.57 4063 —-025 +031
S2 (5.27) 8.39 7.40 872 4084 —215 +0.56 +0.63 +1.20 +0.17
T1 4.06 4.06 440 +133 —131 +1.10 —154 —1.32 0

6 S1 (3.45) 6.63 5.58 536 +103 —-229 +058 +0.63 —049 +0.31
S2 7.77 6.81 779 4092 —-224 +0.57 +0.63 +0.85 +0.22
T1 393 393 415 +135 —137 +111 +055 —142 0

7 S1 (3.18) 6.40 5.45 504 +105 —233 +059 +063 -0.66 +0.31
S2 7.35 6.40 708 4097 —-230 +0.59 +0.63 +0.52 +0.25
T1 3.86 3.86 400 +137 —-141 4111 4056 —1.48 0

The experimental transition energies as those obtained in solution (values between brackets) and in
vapor phase.
E? = Zeroth order transition energies.

%
E?™ = Zeroth order transition energies corrected to the 27 order by the (G ) singly excited con-
figurations. 7
E? = 2™ order corrected transition energies.
51 = diagonal 2* order correction due to the a;.a, delocalization single excitations.
52 = diagonal 2* order correction due to the 4,4, polarization single excitations.
d1 =diagonal 2" order correction due to the aj.a, a;.a, double excitations.
d2 = diagonal 2" order correction due to the a;.a, aj.a, double excitations.

cs and cd are the cross terms for the single and double excitations.

*
the non vanishing weight of the polarization local excitation ( ' ) in the excitonic

13

model and will be discussed in details in a further publication [17].

Figure 3 gives the evolution of the second order correction due to the single
excitations, the double excitations and the full second order correction.

The effect of the single excitations on the transition energies decreases from a
positive value for N=2(+0.23) to a negative value which tends to a constant
for N> 7. This effect can be analyzed as follows:

— The delocalization excitations a, a,(p # q) are all possible on the ground
state determinant, while some of them are impossible when acting on the excited
determinants. Since in the CNDO-PCILO hypotheses, the matrix elements
are the same, the final diagonal correction is positive (see 1 term of B 1/a and
B 3/a of the Appendix). This. correction tends to a nearly constant value for
N > 5 (see Table 1).
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4 Second order corrections
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Fig. 3. Evolution with N of the various second order corrections upon the transition energy. Correction

due to the single excitations upon the first singlet §; x ——x, the second singlet §, x ——— x, the first

triplet T, x -+ x. Correction due to the double excitations upon the first singlet S; @ @. the

second singlet S, @ -——@, the first triplet T, @ --- @. Total second order correction upon the first
singlet A A, the second singlet A ———& | the first triplet A --A

The polarization excitations a,.a, give stronger interactions with the excited
*
determinants (q ) than with the ground-state determinant (2™ term of the contri-
q

bution B 3/a of Appendix) and their diagonal element is therefore negative. The
variation of this correction is rather important but tends to a constant.

The non-diagonal corrections (due to the interaction of the same doubly
excited determinants with two singly excited determinants) are more difficult
to analyze, and depend on the sign changes of the excitonic wave function.

The double excitations increase the transition energy by a quantity (curve C)
which increases slightly from N =2 to N=4, and remains constant for N = 4.
This effect is mainly due to impossibility of making an excitation aj.a,a,.a, on a

7%
determinant & J if por g are equal to i or j.
i

The final full second order effect is positive for N < 3 then it becomes negative
and tends to a constant value which is not yet obtained for N = 7. This correction
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decreases the parallelism of the calculated and experimental transition energies
curves, at least for the small values of N 1.

One may compare EZ, including the full 2 order correction, with E»™ which
represents the usual CI of singly excited states. One notices on Fig. 2a that for
N=2to N=4, E?>E>™ while for N>5, E2<E?>™ In the region 3<N <6
(usual conjugated systems) the difference between the full 2™ order corrected
transition energy and the usual singly excited states Cl is rather small, which may
explain the success of this approximation.

b) S, — S, Transition Energy

The transition S, — S, toward the 2" singlet state is reported in Fig. 2b and
Table 1. The results E} are not reported for N =2 and 3 since a near degeneracy

occurs between the excitonic wave function ¥ and the doubly excited deter-
j* ¥ . .
J > For larger polyenes the degeneracy occurs with higher

minants of the type (‘i
excited states.

The calculated transition energies are too high, worse than for the S,— S,
transition, but the various effects are rather similar, except that the fully 2™
order corrected transition energy E? is always close to E?, the excitonic transition
energy, and larger than E?™, the singly excited CI result.

. . . o*
As concerns the effect of the singly excited determinants < ), two factors
c
compete: the second excited state is more polar than the first one, and thus
. . o* . N . .
interacts less with the (a ) determinants, but it lies higher in energy, and the

denominator energies are smaller.

The single excitations lower more the S,— S, transition energy than the
So— 8§, transition energy. A detailed analysis shows that this is predominantly
due to the cross terms and is difficult to analyze. The double excitations have a
very small (~0.1eV) and decreasing effect on the spacing between the two
lowest singlet excited states. The full 2*¢ order correction increases the spacing
between these excited states.

¢) S; — T, Energy Difference

Figure 2c gives to evolution with N of the zeroth order and the second order
transition energy is Sq — 7, .

The singlet-triplet spacing is known experimentally for N=2 to 4. The n
excitonic treatment gives too large a spacing. This spacing is diminished under

. o* . .
the influence of the (o- ) monoexcited states by an almost constant quantity

! All the results given here take into account the cancellation of common diagrams demonstrated
in Section 2. This cancellation is only approximate (especially in the Epstein-Nesbet definition of H°).
Calculations performed without taking benefit of these cancellations show that they are well satisfied
for double excitations, but the “common” single excitations may introduce a correction up to 0.5eV.
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Fig. 4. Weights of the excitonic wave-function on the local excitations (in per cent). The number on

line i and column j gives the weight on the i —j* process. The upper part concerns the S, singlet excited

state, the lower part concerns (numbers between parenthesis) the second singlet excited state §,. The
symmetry of the problem implies (i,) to be equal to (N —i+1, N—j+1)
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Table 2. Mean n population, () and = charges fluctuations (s) in the double bonds loges for the
excitonic description of the two first singlet excited states

N State Logel Loge2 Loge3 Loge 4
n (4 n c 7 4 n 4
2 S 2 0.65
S, 2 0.71
3 S 1.99 0.51 2.02 0.67
S, 222 0.51 1.57 0.51
4 S, 1.98 0.38 201 0.61
S, 2.10 0.49 1.90 0.52
5 M 1.99 0.19 2 0.50 202 060
S, 203 0.43 2.04 0.49 1.87 0.44
6 S, 1.99 0.21 1.99 042 - 2.02 0.56
S, 201 0.36 2.04 0.49 195 0.41
7 Sy 1.99 0.17 1.99 0.34 2.00 0.30 205 0.54
S, 2.00 0.21 202 0.45 2.00 043 1.95 0.32

(~1eV) since in the CNDO approximations, the triplet 7 and triplet ¢ con-
figurations do not interact [16]. The single excitations stabilize more the triplet
excited state 7, than the ground state S°, but this stabilization varies more slowly
than the corresponding stabilization for the singlet excited state S;, so that the
S, — T, distance is reduced. The double excitations only give a small decrease
(~0.2¢eV)in the §; — T spacing.

4. Analysis of the Wave Functions
a) Ionic versus Neutral Structures

One may analyse the evolution of the relative weight of ionic (delocalization)
versus neutral (polarization) structures in the zeroth-order excitonic wave-
function. It appears from Fig.4 that the first singlet is more neutral than the
second one, nut the difference decreases when N increases. One may notice that

_the weight of neutral structures in the first singlet excited state tends towards a
constant about 46 %. This fact is very important because it introduces a qualitative
difference with the usual delocalized MO descriptions of excited states and will
be demonstrated and discussed in detail elsewhere [17].

In the triplet states, the neutral structures have larger weight. This is mainly

R i o . . .
due to the fact that the triplet (i ) polarization configurations have lower energies
i 1 % . ) 3 ’* 1 ’*
than the singlet (i ) polarization configurations, while the (i ) and ( ) have
i

the same energy in the CNDO approximations.

b) Localization of the Excitation on the Nuclear Skeleton

Qualitatively, from Fig. 4, the first singlet excitations appears to be located
on the center of the molecule (bond N/2 and N/2+1if Niseven (N+1)/2f N is
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odd), the second excitations being more probable on the neighbour bonds (bonds
number N/2 —1 and N/2+2 when N is even (N —1)/2 and (N + 3)/2 when N is
odd).

¢) The Populations in the Bond-Loges and their Fluctuations

Table 2 gives the # bond charges, i.e. the mean 7 populations or mean numbers
of 7 electrons per double bond in the two lowest singlet excited states. The lowest
singlet state appears to be almost neutral, in agreement with the pairing theorem
in the delocalized description. The fact that the mean population is almost 2.0
does not mean that the polar charge transfer structures play no role. It simply
means that the i —j* and j—i* excitations have almost equal weights.

On the contrary the second singlet state implies significant displacement of
the mean charges. The central bond(s) is (are) positive, the other bonds are
negative.

We also have reported in Table 2 the fluctuations of the number of 7 electrons
per double-bond. For a wave-function

i*
gl = Z Ci1*¢(. )
ij* [

sk
one may define the number of electrons in bond k for @ ’
1

o (ool

using the operator n*, number of particles in loge k [19].
Then if 7* is the mean number of electrons in bond k

- 2
A=l
7

nk

The fluctuation of the number of electrons in bond £ is given by
O-k = z (l’llfj* —ﬁk 2 C,-Zj*
i
Since the ;. differs from 2 only when i or j* = k, this fluctuation decreases for this

type of wave function, as may be seen from Table 2 but they are larger than for
the ground state.

Conclusions
We have considered the classical 7 excitonic wave function
i*
T = Z Ci * 45 ( )
i 7% 1
i

as a multiconfigurational zeroth order wave-function. This wave function has
been perturbed under the influence of i) the other singly excited determinants

1/ 5% 1/ ek
(the (a ) configurations coupled with the (: ) configurations through dipole-
g



PCILO Method for Excited States 73

dipole interactions), i) the doubly excited determinants, which introduce polari-

zation effects on the excited state, iii) the triply excited determinants, which
introduce bond and interbond correlation effects on the excited state.

A correct definition of H® allows, through an algebraic derivation of the various
2™ order corrections, to calculate only the changes of polarization, delocalization
and correlation energies in the excited state with respect to the ground state,
despite the multiconfigurational form of the zeroth order wave-function for the
excited state, we have been able therefore to get the “cancellation of common
diagrams in excitation energies” well established when the zeroth order wave-
function for the excited state is the single determinantal Virtual Orbital ap-
proximation. Although a very large number of determinants are taken into
account, the calculation of 2™ order corrected transition energies is very short,
much shorter than when one perturbs a single configuration using delocalized
MOs. For instance the calculation of 10 transition energies in C,,H, ¢ requires
6m 3 seconds on an IBM 360-75 computer. This speed is obtained through both
the complete localization of the MO’s reducing the number and calculation
time of non zero molecular integrals, and a careful choice of the perturbation
procedure. It appears therefore that the use of localized MO’s is very useful not
only for the ground state energy and ground state properties calculation, but also
for the excited states and excitation properties, for which the canonical delo-
calized MO’s are often presented as necessary.

This PCILO method for excited states will be applied to some conceptual
and numerical problems. In further publications [17], it will be shown that the
single determinantal description of the excited state overestimates the delocali-
zation of the excitation with respect to the excitonic treatment. The method will
be applied to some conformational problems involving the excited states.

Appendix

Detailed 2" order energy corrections on the excited state.
This Appendix gives the various types of interactions which appear in the 2
order energy correction on the excitonic wave-function

]'*
TO:ZZCIJ*¢(i>
i

e{n}

We report successively the 2™ order effects of the triply, doubly, singly, excited
determinants and of the ground state determinant ®3. The following notations
are used
a,«=(pp*, 4* q*), a,,= (pp*, qq) are charge-dipole interaction matrix
elements.

b,, = (pp*, 44¥), is a dipole-dipole interaction matrix element
* *
4 (Z ) =E-E° (;], ) is a typical energy denominator.

i,j, k and [ belong to the subspace {n} of the xt MO’s,
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o belong to the complementary subspace,
p and g are any MO’s, belonging to {n} or not.
s=0 or 1 according to the singlet or triplet character of the excited state.

In the typical 2" order energy correction [Eq.(3)] we shall distinguish the
cases where @, and @, are 1) both ionic, 2) ionic and neutral and 3) both neutral.
In the following paragraphs we give in Table form the various non-zero inter-
actions which occur under the CNDO-hypotheses when the MO’s are fully
localized, and the corresponding energy corrections, in a form which makes the
programmation straightforward. In the Tables the doubly bordered columns
represent diagonal interactions.

A) Effect of the Triply Excited Determinants
1) &; and @, both ionic

?, (l*

Due to the CNDO-PCILO hypothesis we only have diagonal terms:

, 7 p* q*
a= Z Z Cizj* [Z Z biq(z - 5pi - 5pj_ 5qi - 5qj + 5piéqj)/A ( )
i j p¥q ! p q
+ Y b2 (1—96,,—6; A(, -
% PI’( ’ JP)/ i p p
The &’s take into account the possible spin restrictions.
2) @, ionic and @; neutral
No triply excited determinant interact with @; and @, in a such a case, due to
the CNDO-PCILO hypothesis.
3) @, and @, both neutral

@, (.i*)
A
"~

i'p g/, i jops
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a= cfi*[ ( ”2b2/A(l p* ‘1)+4(1_s)b /A( . ”)+b2 A(, ))]
Zi % 2 P q ip PPN pop

J* p*
b=Y >'cpcipy” (2—06,—0,)(1—s)by, w/A( . )
] r J D
Combining the corrections 1a and 34, and using the demonstration given in

Part II, one might introduce explicitly the 2" order correlation effects on the
ground state minus some specific terms.

B) Effect of the Doubly Excited Determinants
1) @, and ®; both ionic

@, | (¥

(k)k;ﬁl

j* Ie¥ * =\ 1#j
) 8 T o DRI 4 PO 1 P

7* i* q*
o (IS,

lI

Z; [ZZ 3o+ 28,:8,,(1 — ))FZ*/A( Z*>

P#4q

i* p*
+ 2(2— 5pi —5pj) (Fpp*+api*_api)2/d (i 14 ﬂ ’
14

* k*
b=2% Z”c,*c,k*{& e ont =D FF, /A( )

p#q.j p

i* ke
—(Fkk*+ak1* akl)Fk]*/A( k)

—(Fjj*+ajk* a]l k*/A< J ):l,

4 il —s 7* *
= Z Z Z l}*ckj*[ Z (— 1)(1+5w(1 ) ka*Fip*/A (i i )
i

pFik

j*
+ Fein(Fip + Qi — a)/4 ( k )

* k¥
+ Fipe(Fgs + a5 — akl)/A< K )},

’ " 1" * l*
d= Z Z Z : c}*ckl*z(l S) 1j*Fkl*/A ( k ) .
i
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2) &, ionic, @, neutral

")

RN

o |00 7)€

, * ]* i*
b= Z Z’ CijxCipx [Z' pl* /A ( p) -+ (— 1) F;]*(Fl*+alj* u')/A (l . )
i r

_F'ﬁ*(ijk_l‘aji*—‘aﬁ)/A (] 1 >:|,

1

p* i
Z Z CijeCjje [Z JP* /A ( i ) + (= l)s Fij*( J*+ A — ji)/A (i ". )
i p . .

j*
Fji*(Fii* + e — aij)/A (i . )] s

J

d= Z z’ Zr’ Cij*ckk* 2(1 — S) Fij*(Fkk* -+ akj* akl)/A (
ik

3) &; and &; both neutral

"1

ol e
i pa i j/

a= Zcizi* [Z 2(2_51’i ql) pq*/A < Z*>

P#q

+ 22(1 - Sapi) (Fpp*+api*—api)2/A (
P ]

i* p*
i p)]’

i k*
)

o
b= Y cimeip 201 —8) (Fy + i — ;) (Fyp+ @ — @)/ C ;)

iJ
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C) Effect of the Singly Excited Determinants which do Not Belong to S
1) &; and @, both ionic

o, <l*
?, (:*)
(]l*) i#] (::> (7*>

. zl: ;/ c2. g (Ff;/A (Z) Ff /A ( *)>

o* ¢
b= Z Z Zk:, z( Cijt Citor Fjagr Forpa/ 4 ( ) + € Cuje Fip Frof 4 (; ))
toJ a

2) @[ ioniC, ¢J neutral
( )
k

s )
o | €L o
ZZ 26‘,1*0”*2 [ i (U*)

1

*
b= Zz2c,ﬁcm2 i ( )

3) &, and &, both neutral

& |
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i* a* o*
a=ZClZE*ZF£/A (0_) +F¢72*i*/A <l )+4(1—S)bm/A (O' ):

b = Z Z’ Cii*ij*Z 4(1 —S) biabjo'/Aao'* .
i o

D) Effect of the Ground State Determinant
a=3 Y ¥ ¥ CypcunFpFo/ 4(0).
i k 1

One may see from these formulae that

i) the diagonal corrections a should imply two summations over the # MO’s
and two summations over all MO’s (i.e. a time proportional to n2n?), but the
introduction of the ground state corrections reduce them to summations of the
type >’ Y. Y Y involving n2n elements.

i k p
ii) The cross-terms (P, # @) b, ¢, d only involve Y > » " summations of the
i i k
type Y Y Y Y involving nn matrix elements. ’ ’
i j k

The Jtotal I::omputation time of a 2% order corrected transition energy is
therefore proportional to n2n, while the 2™ order corrected ground-state energy
required a time proportional to #n%. One may distinguish two cases;

i) The conjugated system involved in the zeroth order description of the
excitation is kept constant (n, constant), n increasing with the number of sub-
stitvants. Then the computation time of the transition energy only increases
like n.

ii) The dimension of the conjugated system increases like n(n,=n/S in
conjugated hydrocarbons), and the computation time of the transition energy
varies as n*/(5)%.
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